If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-12y+1=0
a = 1; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·1·1
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{35}}{2*1}=\frac{12-2\sqrt{35}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{35}}{2*1}=\frac{12+2\sqrt{35}}{2} $
| -2y=-3y+100 | | x-5-6x-23=3x+2 | | 58=11x-30;x | | 10+100n=15 | | 51=43+w | | 2x+6+4=19 | | 146=-8n+2 | | 7x+42=-3(x+6) | | 1/2x-3/5x=-3/10 | | -8+1/5x=-3 | | -5-5(2-6a)=135 | | 8n+10-5n=31 | | 4x+8=120 | | X^2-15x=-75 | | 10x-9=1-3x | | y^2-12y-1=0 | | D=11/5(p-15) | | 2(x+3)=-2x+5 | | 5(x=9)=10 | | -5x-3=5x+14 | | 9.87w=7.97 | | 9.37f=21.98 | | c+26c=-8 | | 5x+4-9=6 | | 6x+15=-37 | | -4(-5p+3)=88 | | 8/5=k-8/5k-10 | | -5x-3=-5x-14 | | -5x-24=-9x+12 | | 0.2x+1.5=-2.3 | | w-8=1.2 | | u-26=6 |